Written Calculation Policy for Mathematics # **Key vocabulary for + - X ÷ written calculations** | Addition | Subtraction | Multiplication | Division | Equals | |--|--|--|---|-------------------------------| | Add
And | Between | Altogether
Arrays | divide into
divide by | Balance
Equals to | | Addition Altogether Increase inverse of – make | difference decrease fewer inverse of + minus subtract | By groups of inverse of ÷ lots of multiply | divisible by division half inverse of x remainder | Equivalent Same as Same value | | more
plus
sum
total | subtraction
take away
less than | multiply by multiple of product times twice/double etc | quotient
share equally | | #### Early Years Foundation Stage (based on statutory framework for the early years foundation stage 2021) | Addition | Subtraction | Multiplication | Division | |--|---|-------------------------------------|----------------------------------| | Count sets of objects reliably up to twenty. | Taking away ones | Double a number up to 10 | Sharing objects up to 10 equally | | Combining two parts to make a whole. | Counting back | Counting in 2s, 5s and 10s up to 20 | | | Start at a bigger number and count on. | Finding a missing part, given a whole and a part. | | | | Regrouping to make ten (number bonds) | Subtracting within 10 | | | #### **ELG: Number:** Children at the expected level of development will: - Have a deep understanding of number to 10, including the composition of each number; 14 - Subitise (recognise quantities without counting) up to 5; - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts. #### **ELG: Numerical Patterns: Children at the expected level of development will:** - Verbally count beyond 20, recognising the pattern of the counting system; - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity; - Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally. #### **Mathematics** Mathematics Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10, the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting - children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes. # Addition + #### Concrete - > These are visual images of the actual resources to use within the classroom. - Use a range of different practical resources.(e.g.base 10, place value counters, straws) #### **Pictorial** - These are pictorial representations that may appear in pupil's work. - > These can also be completed practically when needed. #### Abstract These can be number lines, bar models, Part-part whole, formal methods ## **Counting and adding more** Children add one more person or object to a group to find one more. Use a range of resources e.g. cars, eggs, shells, teddy bears. Children add one more cube or counter to a group to represent one more One more than 4 is 5. Use a number line to understand how to link counting on with finding one more One more than 6 is 7. 7 is one more than 6. Learn to link counting on with adding more than one. $$5 + 3 = 8$$ #### **Understanding part-part-whole relationship** Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6. Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5. The whole is 6. Use a part-whole model to represent the numbers. $$6 + 4 = 10$$ # Knowing and finding number bonds within 10 Break apart a group and put back together to find and form number bonds. 3 + 4 = 7 6 = 2 + 4 Knowing and finding number bonds within 10 Use five and ten frames to represent key number bonds. $$5 = 4 + 1$$ $$10 = 7 + 3$$ Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. $$4 + 0 = 4$$ $$3 + 1 = 4$$ #### Concrete - > These are visual images of the actual resources to use within the classroom. - Use a range of different practical resources. (e.g.base 10, place value counters, straws) #### **Pictorial** - These are pictorial representations that may appear in pupil's work. - > These can also be completed practically when needed. #### **Abstract** ➤ These can be number lines, bar models, Part-part whole, formal methods ## **Counting back and taking away** Children arrange objects and remove to find how many are left. 1 less than 6 is 5. 6 subtract 1 is 5. Children draw and cross out or use counters to represent objects from a problem. 9 - = = There are children left. Children count back to take away and use a number line or number track to support the method. 9 - 3 = 6 # **Multiplication X and Division ÷** #### Concrete - > These are visual images of the actual resources to use within the classroom. - Use a range of different practical resources. (e.g.base 10, place value counters, straws) #### **Pictorial** - ➤ These are pictorial representations that may appear in pupil's work. - > These can also be completed practically when needed. #### **Abstract** These can be number lines, bar models, Part-part whole, formal methods ## Grouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups. Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups. #### Sharing Share a set of objects into equal parts and work out how many are in each part. EYFS | Progression | National Curriculum Expectations - Addition and Subtraction | | | | | | | | | |--|---|--|---|--|---|---|--|--|--| | in Maths | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | | | | | Calculation
Methods
(formal and
informal) | add and subtract one-digit and
two-digit numbers to 20,
including zero | add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and | add and subtract
numbers with up to
three digits, using
formal written methods
of columnar addition
and subtraction | add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate | add and subtract whole
numbers with more than
4 digits, including using
formal written methods
(columnar addition and
subtraction) | | | | | | | | tens * two two-digit numbers * adding three one-digit numbers | add and subtract numbers mentally, including: * a three-digit number and ones | | (extend this to decimals) | | | | | | Mental
Methods | | | * a three-digit number and tens * a three-digit number and three-digit number and hundreds | | | | | | | | Understanding
addition and
subtraction | read, write and interpret
mathematical statements
involving addition (+),
subtraction (-) and equals (=)
signs | show that addition of two
numbers can be done in
any order (commutative)
and subtraction of one
number from another
cannot | | | | | | | | | Addition and subtraction facts | represent and use number
bonds and related subtraction
facts within 20 | recall and use addition and
subtraction facts to 20
fluently, and derive and use
related facts up to 100 | | | | | | | | | Problem
Solving | solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7 = \Box - 9$ | solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge | solve problems,
including missing
number problems,
using number facts,
place value, and more
complex addition and
subtraction | solve addition and
subtraction two-step
problems in contexts,
deciding which
operations and methods
to use and why | solve addition and
subtraction multi-step
problems in contexts,
deciding which
operations and methods
to use and why | solve addition and
subtraction multi-step
problems in contexts,
deciding which
operations and methods
to use and why | | | | | | | of mental and written
methods | | | | | | | | # Addition + #### Concrete - > These are visual images of the actual resources to use within the classroom. - Use a range of different practical resources.(e.g.base 10, place value counters, straws) #### **Pictorial** - > These are pictorial representations that may appear in pupil's work. - > These can also be completed practically when needed. #### **Abstract** ➤ These can be number lines, bar models, Part-part whole, formal methods ## Combining two parts to make a whole Use a range of resources e.g. cars, eggs, shells, teddy bears. Pupils to represent the cubes using dots or crosses. They could put each part on a part whole model too. 4 + 3 = 7 Four is a part, 3 is a part and the whole is seven. **Counting on** Use of place value counters to add HTO + TO, HTO + HTO etc. - When there are 10 ones in the 1s column- we exchange for 1 ten. - When there are 10 tens in the 10s column- we exchange for 1 hundred. $$275 + 16 = 291$$ Pupils to use place value counters in a place value chart, circling when they make an exchange. ## **Adding decimals** **5** & Years Include numbers with differing decimal places | 0 | • | Tth | Hth | | 0 | | Tth | Hth | |-------|---|-----|-------|----|---|---|-----|-----| | 00000 | • | | | | 5 | | 0 | 0 | | | | | 00000 | +_ | 1 | ٠ | 2 | 5 | | | | | 00000 | | 6 | | 2 | 5 | Pupils to use place value counters in a place value chart, circling when they make an exchange. (see above for example) Without exchange With exchange Where numbers of decimal places are different # **Subtraction -** #### Concrete - > These are visual images of the actual resources to use within the classroom. - ➤ Use a range of different practical resources. (e.g.base 10, place value counters, straws) #### **Pictorial** - ➤ These are pictorial representations that may appear in pupil's work. - These can also be completed practically when needed. #### **Abstract** ➤ These can be number lines, bar models, Part-part whole, formal methods ? # **Counting back** Children arrange objects and remove to find how many are left. 1 less than 6 is 5. 6 subtract 1 is 5. 3 9 - = = There are children left. Pupils draw and cross out or use counters to represent object from a problem. $$4 - 3 = ?$$ $$? = 4 - 3$$ #### Find the difference | To – To with exchange Tens Ones 4 5 -2 7 | | |---|--| | Tens Ones 4 5 -2 7 | | | Tens Ones Tens Ones Tens Ones Tens Ones Pupils to represent the base 10 in a place value chart, showing the exchange. Tens Ones Too A5 - 27 = 18 Tens Ones Too A 15 - 2 7 8 Too A 15 - 2 7 8 HTO - TO, HTO - HTO (with exchange). Pupils will need to recap on 'without exchange' first. | | 000 0000 234 - 88 = 146 number subtract a 2-digit number, pupils should understand how to line up the numbers correctly. Children to use place value counters in a place value chart showing the exchange. • If the subtraction is a 3-digit 3 7 175 - 38 = 137 Pupils should also understand how to exchange in calculations where there is a zero in the 10s column. 234 - 88 = 146 ThHTO - HTO, ThHTO - ThHTO (with exchange). Pupils will need to recap on 'without exchange' first. | Years 5 & 6 | Use of place value counters to subtract more than 4-digit numbers | Children to use place value counters in a place value chart, circling when they make an exchange. (see above for example) | TTh Th H T O 58 2 0 9 7 - 1 8 5 3 4 4 3 5 6 3 Pupils to subtract numbers of different sizes. | |-------------|---|--|---| | Sub | tracting decimals | | different sizes. | | Years 5 & 6 | O | Children to use place value counters in a place value chart, circling when they make an exchange. (see above for example) | O · Tth Hth 5 · ¹7 ¹ ⁴ - 2 · 2 · 5 3 · 4 · ¶ • Pupils subtract numbers with different number of decimal places. 3.921 - 3.75 O · Tth Hth Thth 3 · 9 · 2 · 1 - 3 · 7 · 5 · 0 · | | Progression | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | |--|---|---|---|---|---|--| | in Maths Multiplication (calculation methods formal & informal) | | calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (÷) and equals (=) signs | write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit | multiply two-digit and three-
digit numbers by a one-digit
number using formal written
layout | multiply numbers up to
4 digits by a one- or
two-digit number using
a formal written
method, including long
multiplication for two-
digit numbers | multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication multiply one-digit numbers with up to two decimal places by whole numbers | | Division
(calculation
methods
formal &
informal) | | | numbers times
one-digit
numbers, using
mental and
progressing to
formal written
methods | | divide numbers up to 4
digits by a one-digit
number using the
formal written method
of short division and
interpret remainders
appropriately for the
context | divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context | | Multiplying
and dividing by
10, 100, 1000 | | | | find the effect of dividing a
one- or two-digit number by
10 and 100, identifying the
value of the digits in the
answer as ones, tenths and
hundredths | | multiply and divide numbers by 10, 100 and 1000 where the answers are up to three decimal places | | Multiplication
and division
facts | | recall and use
multiplication and
division facts for 2, 5, 10
multiplication tables. | recall and use
multiplication and
division facts for 2,
3, 4, 5, 8, 10
multiplication
tables. | recall and use multiplication
and division facts for all
multiplication tables up to
12 x 12. | | | | Problem
Solving | solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher | solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts | solve problems,
including missing
number problems,
involving
multiplication and
division | solve problems involving
multiplying and adding,
including using the
distributive law to multiply
two-digit numbers by one
digit | solve problems involving multiplication and division and a combination of these, including understanding the meaning of the equals sign | solve problems involving multiplication and division | # **Multiplication X** #### Concrete - These are visual images of the actual resources to use within the classroom. - Use a range of different practical resources.(e.g.base 10, place value counters, straws) #### **Pictorial** - These are pictorial representations that may appear in pupil's work. - > These can also be completed practically when needed. #### **Abstract** These can be number lines, bar models, Part-part whole, formal methods # Find the total of equal groups by counting in 2s, 5s, 10s There are 5 pens in each pack ... 5...10...15...20...25...30...35...40... | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | q | 10 | |----|----|----|----|----|----|----|----|----|-----| | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | (50 | 100 squares and ten frames support counting in 2s, 5s and 10s. ear 1 $$4 \times 3 = 12$$ $3 \times 4 = 12$ $$4 + 4 + 4 = 12$$ There are 3 equal groups with 4 in each group. $$4 \times 3 = 12$$ $3 \times 4 = 12$ $4 + 4 + 4 = 12$ $$5 \times 3 = 15$$ $3 \times 5 = 15$ $5 + 5 + 5 = 15$ Short multiplication TO x O - Expanded Column Method Long multiplication - multi-digit numbers up to 4 digits x TO - Column Method | | | 4.72 | |--------|---|---------------------------------| | Year 6 | As pupils start to multiply one-digit numbers with up to two decimal places by whole numbers, they should be confident with the abstract. | <u>x 3</u>
<u>14.16</u>
2 | #### Concrete - These are visual images of the actual resources to use within the classroom. - ➤ Use a range of different practical resources. (e.g.base 10, place value counters, straws) #### **Pictorial** - ➤ These are pictorial representations that may appear in pupil's work. - These can also be completed practically when needed. #### **Abstract** These can be number lines, bar models, Part-part whole, formal methods ## Grouping Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups. Children may relate this to counting back in steps of 2, 5 or 10. ## **Sharing** Share a set of objects into equal parts and work out how many are in each part. Sketch or draw to represent sharing into equal parts. 10 shared into 2 equal groups gives 5 in each group. # **Grouping equally** There are 13 sticks in total. There are 3 groups of 4, with 1 remainder. $22 \div 5 = 4 \text{ remainder } 2$ $22 \div 5 = ?$ $3 \times 5 = 15$ $4 \times 5 = 20$ $5 \times 5 = 25$... this is larger than 22 So, $22 \div 5 = 4$ remainder 2 # Short Division - TO ÷ O, HTO ÷ O, ThHTO ÷ O With exchange (00000 60000 $615 \div 5 = 123$